Lysine 219 participates in NADPH specificity in a flavin-containing monooxygenase from Saccharomyces cerevisiae.

نویسندگان

  • J K Suh
  • L L Poulsen
  • D M Ziegler
  • J D Robertus
چکیده

The flavin-containing monooxygenase from Saccharomyces cerevisiae (yFMO) uses NADPH and O(2) to oxidize thiol containing substrates such as GSH and thereby generates the oxidizing potential for the ER. The enzyme uses NADPH 12 times more efficiently than NADH. Amino acid sequence analysis suggests that Lys 219 and/or Lys 227 may act as counterions to the 2' phosphate of NADPH and to help determine the preference for pyridine nucleotides. Site directed mutations show that Lys 219 makes the greater contribution to cosubstrate recognition. Conversion of Lys 219 to Ala reduces NADPH dependent activity 90-fold, but has no effect on NADH-dependent activity. Conversion of Lys 227 to Ala reduces NADPH-dependent activity fivefold and NADH-dependent activity threefold. Dissociation constants for NADP(+) to oxidized yFMO were measured spectroscopically. K(d) is 12 microM for the wild-type enzyme and 243 microM for the K219A mutant, consistent with the role of Lys 219 in pyridine nucleotide binding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular cloning and kinetic characterization of a flavin-containing monooxygenase from Saccharomyces cerevisiae.

An open reading frame from yeast coding for a homologue of flavin containing monooxygenase (FMO) has been cloned into several Escherichia coli expression vectors. A His10 peptide attached to the amino terminus produced a high yield of soluble protein when coexpressed with GroEL and GroES. The protein was purified on an affinity column and characterized. The protein binds one mole per mole of fl...

متن کامل

Identifying determinants of NADPH specificity in Baeyer-Villiger monooxygenases.

The Baeyer-Villiger monooxygenase (BVMO), 4-hydroxyacetophenone monooxygenase (HAPMO), uses NADPH and O(2) to oxidize a variety of aromatic ketones and sulfides. The FAD-containing enzyme has a 700-fold preference for NADPH over NADH. Sequence alignment with other BVMOs, which are all known to be selective for NADPH, revealed three conserved basic residues, which could account for the observed ...

متن کامل

Saccharomyces Cerevisiae as a Biocatalyst for Different Carbonyl Group under Green Condition

In this researchsaccharomyces cerevisiae (baker’s yeast) was used as a cheap, readily accessible, selective, efficient, and green bio-catalyst in a chemo selective reduction of carbonyl group to hydroxyl group. In this green procedure three substrates e.g. (3-(3-nitrophenyl)aziridin-2-yl)-1-phenyl-methanone, pyruvate ester, and 2-acetyl-γ-butyrolactone were r...

متن کامل

An unprecedented NADPH domain conformation in lysine monooxygenase NbtG provides insights into uncoupling of oxygen consumption from substrate hydroxylation.

N-Hydroxylating monooxygenases are involved in the biosynthesis of iron-chelating hydroxamate-containing siderophores that play a role in microbial virulence. These flavoenzymes catalyze the NADPH- and oxygen-dependent hydroxylation of amines such as those found on the side chains of lysine and ornithine. In this work we report the biochemical and structural characterization of Nocardia farcini...

متن کامل

Effect of Processed Lemon Pulp With Saccharomyces Cerevisiae Yeast on Protein and Energy Metabolism in Raini Goats

The aim of present study is investigating effect of treated lemon pulp by Saccharomyces cerevisiae yeast on protein and energy metabolism in goats was fed with this product. In this experiment 8 goats from raini breed were used for 21 days period; 16 days for adaptation and 5 days for sampling, to investigate the effect of processing lemon pulp by Saccharomyces cerevisiae yeas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Archives of biochemistry and biophysics

دوره 372 2  شماره 

صفحات  -

تاریخ انتشار 1999